\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Inner Product
Independent Set of Real Vectors
Real Vector Angles
Needed by:
Orthogonal Real Matrices
Orthonormal Set of Vectors
Real Matrices with Orthonormal Columns
Links:
Sheet PDF
Graph PDF

Orthonormal Set of Real Vectors

Definition

A vector is normalized if its norm is 1. A set of vectors $\set{u_1, \dots , u_k}$ orthogonal if $u_i^\top u_j = 0$ whenever $i \neq j$. A set of vectors is orthonormal if the set is orthogonal and each vector is normalized.

Basis

An orthonormal set of vectors is also an independent set. In other words, orthonormality is stronger than independence.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view