\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Subspaces
Vectors as Matrices
Needed by:
Real Matrix Nullspace
Links:
Sheet PDF
Graph PDF

Orthogonal Real Subspaces

Definition

Two subspaces $S, T \subset \R ^n$ are orthogonal if

\[ x^\tp y = 0 \text{ for all } x \in S, y \in T. \]

For any set $S \subset \R ^n$ (not necessarily a subspace), the orthogonal complement of $S$ is the set

\[ S^\perp = \Set{x \in \R ^n}{x^\top y = 0 \text{ for all } y \in S}. \]

$S^\perp $ is the set of all vectors which are orthogonal to every vector in $S$.

Orthgonal complement is a subspace

Notice that $S^\perp $ is always a subspace. If $x \in S^\perp $, then $x^\top y = 0$ for all $y \in S$. So then $(\alpha x)^\top y = \alpha (x^\top y) = 0$ for all $\alpha \in \R $ and $y \in S$. We conclude $\alpha x \in S^\perp $ for all $\alpha \in \R $. In other words, $S^\perp $ is closed under scalar multiplication. If $x, z \in S^\perp $, then $(x+z)^\top y = x^\top y + z^\top y = 0 + 0 = 0$. We conclude that $x + z \in S^\perp $ for all $x, z \in S^\perp $. In other words, $S^\perp $ is closed under vector addition. Consequently, $S^\perp $ is a subspace.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view