\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Matrices
Orthonormal Set of Vectors
Matrix Transpose
Needed by:
Eigenvalue Decomposition
Normal Matrices
Rotate Scale Rotate Decomposition
Links:
Sheet PDF
Graph PDF

Orthogonal Matrices

Definition

An orthonormal (or orthogonal) matrix is a matrix whose columns are an orthonormal family of vectors.

Some authors call these real orthogonal or unitary matrices.

Notation

Let $A \in \F ^{m \times n}$. Something something

\[ AA^\top = I. \]

Characterizations

A matrix is orthonormal if and only if its transpose product with the matrix is the identity.
A matrix is orthonormal if and only if its transpose is orthonormal.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view