In ordinary reduction, we obtain a sequence of row reducers.
Let $(A \in \R ^{m \times m}, b \in \R ^{m})$
be an ordinarily reducible linear system.
The ordinary reducer
sequence is a sequence of reducer matrices
$L_{1}, \dots L_{m-1}$ with $A_1 = L_1A$ and
$A_i = L_iA_{i-1}$ for $2 \leq i \leq m-1$.
In other words, $U \in \R ^{m \times m}$
defined by
If $L_{m-1}\cdot s L_2 L_1$ in
Equation~\eqref{equation:ordinaryreducerfactorization:main}
is invertible, then we have
\[
A = \inv{(L_{m-1}\cdot s L_2 L_1)}U,
\] \[
\inv{(L_{m-1} \cdots L_2 L_1)} =
\inv{L}_1\inv{L}_2\cdots\inv{L}_{m-1}.
\] \[
L_k = \barray{
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -\ell _{k+1,k} & 1 & &\\
& & \vdots & & \ddots & & \\
& & -\ell _{mk} & & & 1
}
\]
The two important properties of the $L_i$ is
that they have simple inverses and a simple
product.
Define
\[
\ell _k = (0,\cdot s, 0,\ell _{k+1,k}, \cdot s, \ell _{m,k})
\]
\[ (I - \ell _k e_k^\tp)(I + \ell _k e_k^\tp) = I - \ell _ke^\tp_k\ell _ke^\tp_k = I. \]
$\inv{L}_{k}\inv{L}_{k+1}$ is the unit lower-triangular matrix with the entries of both $\inv{L}_k$ and $\inv{L}_{k+1}$ in their usual places.
\[ \inv{L}_k \inv{L}_{k+1} = (I + \ell _ke^\tp_{k})(I + \ell _{k+1}e^\tp_{k+1}) = I + \ell _ke^*_k + \ell _{k+1}e^*_{k+1}. \]
\[ \inv{L}_1\inv{L}_2\cdots\inv{L}_{m-1} = \barray{ 1 & & & & \\ \ell _{21} & 1 &&& \\ \ell _{31} & \ell _{32} & 1 & & \\ \vdots & \vdots & \ddots &\ddots & \\ \ell _{m1} & \ell _{m2} & \cdot s & \ell _{m,m-1} & 1 \\ } \]
If we define $L = L_{1}^{-1} \cdots L_{m-1}^{-1}$ we obtain $A = LU$. In other words, we have a factorization (the ordinary reducer factorization) of $A$ in terms of two matrices. The first, $L$ is unit lower triangular. The second, $U$, is upper triangular.