\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Tree Distribution Approximators
Optimal Spanning Trees
Mutual Information Graph
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Optimal Tree Distribution Approximators

Why

Which tree is optimal for tree distribution approximation?

Definition

We want to choose a tree whose corresponding approximator for the given distribution minimizes the relative entropy with the given distribution among all tree distribution approximators. We call such a distribution an optimal tree approximator of the given distribution. We call a tree according to which an optimal tree approximator factors and optimal approximator tree.

Result

Let $A_1, \dots , A_n$ be finite nonempty sets. Define $A = \prod_{i = 1}^{n} A_i$. Let $q: A \to [0, 1]$ a distribution. A tree $T$ on $\set{1, \dots , n}$ is an optimal approximator tree if and only if it is a maximal spanning tree of the mutual information graph of $q$.

First, denote the optimal tree distribution approximator of $q$ for tree $T$ by $p^*_T$. Express

\[ p^*_T = q_1 \prod_{i \neq 1} q_{i \mid \pa_i} \]

Second, express $d(q, p) = H(q, p) - H(q)$. Since $H(q)$ does not depend on $T$, $p^*_T$ is a minimizer (w.r.t. $T$) of $d(q, p^*_T)$ if and only if it is a minimizer of $H(q, p^*_T)$.

Third, express the cross entropy of $p^*_T$ relative to $q$ as

\[ \begin{aligned} H(q, p^*_T) &= H(q_1) - \sum_{i \neq 1} \sum_{a \in A} q(a)\log q_{i \mid pa{i}}(a_i, a_{\pa_i}) \\ &= H(q_1) - \sum_{i \neq 1} \sum_{a \in A} q(a)(\log q_{i,\pa{i}}(a_i, a_{\pa_i}) - \log q_{\pa{i}}(a_{\pa{i}})) \\ &= H(q_1) - \sum_{i \neq 1} \sum_{a \in A} q(a)(\log q_{i,\pa_i}(a_i, a_{\pa_i}) - \log q_{\pa_i}(a_{\pa_i}) - \log q_i(a_i) + \log q_{i}(a_i)) \\ &= \sum_{i = 1}^{n} H(q_i) - \sum_{i \neq 1} I(q_i, q_{\pa_i}) \\ &= \sum_{i = 1}^{n} H(q_i) - \sum_{\set{i,j} \in T} I(q_i, q_{j}) \\ \end{aligned} \]

where $\pa_i$ denotes the parent of vertex $i$ in $T$ rooted at vertex 1 ($i = 2, \dots , n$). For $i = 1, \dots , n$, $H(q_i)$ does not depend on the choice of tree. Therefore selecting a tree to minimize the second term in the final expression above is equivalent to choosing a maximal spanning tree from the weighted graph with mutual information edge weights; namely, the mutual information graph of $q$.

The foregoing statement says that to we should first select a maximum spanning tree of the mutual information graph of the distribution we are approximating. Then, we should pick the best approximator to $q$ which factors according to that tree.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view