\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Natural Products
Number of Disjoint Unions
Needed by:
Set Numbers and Arithmetic
Size of Direct Products
Links:
Sheet PDF
Graph PDF
Wikipedia

Number of Set Products

Result

Suppose $A$ and $B$ are finite sets. Then $\num{A \times B} = \num{A} \times \num{B}$.
The proof involves induction on the size of one of the sets, and will, I believe, use the result of the number of a disjoint union; thus the dependence on the sheet Number of Disjoint Unions.

This is often called the multiplication principle, rule of product, or the fundamental principle of counting.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view