\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Lists
Prime Numbers
Natural Numbers
Needed by:
Multisets
Prime Number Factorizations
Links:
Sheet PDF
Graph PDF
Wikipedia

Number Factorizations

Definition

Given a number $n \in \N $, a factorization $\pi = (\pi _1, \dots , \pi _p)$ of $n$ is a list of numbers in $\N $ satisfying

\[ n = \pi _1\cdot \pi _2\cdots\pi _p \]

We say that the factorization $\pi $ factors $n$ and we call $\pi _i$ a factor, and refer to the set $\set{\pi _1, \dots , \pi _p}$ as the factors.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view