\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Natural Number Notation
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Number Base Notation

Why

In our definition of natural number notation, the notation $(\eta _1, \eta _2, \eta _3)$, which we agreed to denote $\eta _3\eta _2\eta _1$ has the corresponding number

\[ \eta _1 + \eta _2\cdot 10 + \eta _3\cdot (10^2) \]

In general for the notation $\eta _k\cdots\eta _1$, we had the number

\[ \sum_{i = 1}^{k} \eta _k \cdot (10)^{k-1} \]

What if we replace ten in the above expression?

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view