\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Exponential Function
Outcome Probabilities
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Normalized Exponential Probability Distributions

Definition

Suppose $\mathcal{X} $ is a finite set. A distribution $p: \mathcal{X} \to [0,1]$ is a normalized exponential distribution (also Gibbs distribution, Boltzmann distribution) if there exists a function $F: \mathcal{X} \to \R $ so that

\[ p(x) = \frac{\exp(-F(x))}{\sum_{\xi \in \mathcal{X} } \exp(-F(\xi ))} \quad \text{for all } x \in \mathcal{X} \]

The function $F$ is sometimes called the energy (or energy function) of $p$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view