\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Operators
Self-Adjoint Operators
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Normal Operators

Why

We can abstract the property of self-adjointness.

Definition

An operator $T$ oon an inner product space is called normal if if commutes with its adjoints. In symbols, $T \in \mathcal{L} (V)$ is normal if

\[ TT^* = T^* T \]

Every self-adjoint operator is normal.
Suppose $T \in \mathcal{L} (V)$ with $T^* = T$. Then $TT^* = TT = T^*T$, and so $T$ is normal.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view