\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Eigenvalue Decomposition
Orthogonal Matrices
Symmetric Matrices
Antisymmetric Matrices
Complex Matrices
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Normal Matrices

Why

Which matrices have orthogonal eigenvectors?

Definition

A normal matrix is a matrix which has orthogonal eigenvectors. It commutes with its (conjugate) transpose.

Notation

If $A \in \C ^{d \times d}$ is normal then there exists an orthonormal matrix $Q \in \C ^{d \times d}$ and a diagonal matrix $\Lambda \in \C ^{d \times d}$ so that $A = Q\Lambda Q^\top $.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view