\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Probabilistic Errors Linear Model
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Normal Errors Linear Model

Why

We model a real-valued output as corrupted by small random errors with a normal density. In other words, we make further distributional assumptions on the probabilistic errors linear model for the purposes of hypothesis testing and interval estimation.1

Definition

Let $(x, A, e)$ be a probabilistic errors model and assume $e$ has a normal density with mean $0$ and covariance $\sigma ^2I$. In this case we call $(x, A, e)$ a classical linear model with normality assumption. In this case $y$ is normally distributed with mean $Ax$ and variance $\sigma ^2I$.


  1. Future editions will define and need these sheets. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view