What of the conditional densities of a multivariate normal density.
Let $f: \R ^d \to \R $ be a normal density
with mean $\mu \in \R ^d$ and covariance
$\Sigma \in \mathbfsf{S} ^d$.
\[
\mu = \bmat{\mu _x \\ \mu _y} \quad \text{ and } \quad
\Sigma = \bmat{
\Sigma _{xx} & \Sigma _{xy} \\
\Sigma _{yx} & \Sigma _{yy}
}
\]
The conditional density $f_{x \mid y}(\xi ,
\gamma )$ is
$\normal{\bar{\mu }(\gamma )}{\bar{\Sigma }}$ where
\[
\bar{\mu }(\gamma ) = \mu _1 +
\Sigma _{xy}\Sigma _{yy}^{-1}(\gamma - \mu _y) \text{ and }
\bar{\Sigma } = \Sigma _{xx} -
\Sigma _{xy}\Sigma _{yy}^{-1}\Sigma _{yx}.
\]