\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Multivariate Normals
Conditional Densities
Needed by:
Normal Linear Model
Tree Approximators of a Normal
Links:
Sheet PDF
Graph PDF

Normal Conditionals

Why

What of the conditional densities of a multivariate normal density.

Result

Let $f: \R ^d \to \R $ be a normal density with mean $\mu \in \R ^d$ and covariance $\Sigma \in \mathbfsf{S} ^d$.

\[ \mu = \bmat{\mu _x \\ \mu _y} \quad \text{ and } \quad \Sigma = \bmat{ \Sigma _{xx} & \Sigma _{xy} \\ \Sigma _{yx} & \Sigma _{yy} } \]

The conditional density $f_{x \mid y}(\xi , \gamma )$ is $\normal{\bar{\mu }(\gamma )}{\bar{\Sigma }}$ where

\[ \bar{\mu }(\gamma ) = \mu _1 + \Sigma _{xy}\Sigma _{yy}^{-1}(\gamma - \mu _y) \text{ and } \bar{\Sigma } = \Sigma _{xx} - \Sigma _{xy}\Sigma _{yy}^{-1}\Sigma _{yx}. \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view