\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Metrics
›
Norms
›
Needed by:
Complete Normed Spaces
›
Complex Distance
›
Topological Vector Spaces
›
Links:
Sheet PDF
›
Graph PDF
›
Norm Metrics
Why
If we have a norm, then we have a metric.
Motivating result
Let $(V, F)$ be a vector space.
Let $f: V \to \R $ be a norm.
Let $g: V \times V \to \R $ such that
\[ g(x, y) = \norm{x - y}. \]
Then $g$ is a metric.
1
Future editions will include an account.
↩︎
Norm Metrics
Links:
Sheet PDF
›
Graph PDF
›
Needs:
Metrics
›
Norms
›
Needed by:
Complete Normed Spaces
›
Complex Distance
›
Topological Vector Spaces
›
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version
13a6779cc
—
About
—
Show the old page view