\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Polynomials
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Nonnegative Polynomials

Definition

A polynomial $p: \R \to \R $ is nonnegative (a nonnegative polynomial, nonnegative real polynomial) if

\[ p(x) \geq 0 \quad \text{for all } x \in \R \]

In this case, we call $p$ positive semidefinite or PSD.

Testing nonnegativity

Given polynomial $p$, how do we know if $p$ is (globally) nonnegative? Consider $p: \R \to \R $ defined by

\[ p(x) = 5x^4 - 4x^3 - x^2 + 2x + 2 \]

We visualize the graph of $p$ below.

Given the coefficients of $p$, namely the list $(2, 2, -1, -4, 5) \in \R ^5$, how can we tell? It is not so obvious, but if we write

\[ p(x) = (x^2 + 1)^2 + (2x^2 - x - 1)^2, \]

then it is readily apparent that $p \geq 0$ since all squares are nonnegative.

We can ask two questions:

  1. If $p$ is a nonnegative polynomial, can it be written as a sum of squares?
  2. If $p$ is a sum of squares, how do we find them?

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view