\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Recursion Theorem
Needed by:
Integer Order
Integer Partitions
Integer Sums
Natural Equations
Natural Products
Natural Summation
Number of Disjoint Unions
Number Partitions
Links:
Sheet PDF
Graph PDF

Natural Sums

Why

We want to combine two groups.1

Defining result

For each natural number $m$, there exists a function $s_m: \omega \to \omega $ which satisfies

\[ s_m(0) = m \quad \text{ and } \quad s_m(\ssuc{n}) = \ssuc{(s_m(n))} \]

for every natural number $n$.
The proof uses the recursion theorem (see Recursion Theorem).2

Let $m$ and $n$ be natural numbers. The value $s_m(n)$ is the sum of $m$ with $n$.

Notation

We denote the sum $s_m(n)$ by $m + n$.

Properties

The properties of sums are direct applications of the principle of mathematical induction (see Natural Induction).3

Let $k$, $m$, and $n$ be natural numbers. Then

\[ (k + m) + n = k + (m + n). \]

Let $m$ and $n$ be natural numbers. Then

\[ m + n = n + m. \]

Relation to addition

Let $k$, $m$, and $n$ be natural numbers. Then

\[ k \cdot (m + n) = (k \cdot m) + (k \cdot n). \]


  1. Future editions will change this section. ↩︎
  2. Future editions will give the entire account. ↩︎
  3. Future editions will include the accounts. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view