\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Square Numbers
Natural Equations
Needed by:
Real Square Roots
Links:
Sheet PDF
Graph PDF

Natural Square Roots

Why

We want to solve equations with squares.

Definition

Let $m$ be a square number. We want to find $n$ to satisfy

\[ n^2 = m. \]

We call such an $n$ a square root of $m$.

The square root of a square number is unique.

This result motivates definining a function the square root function which square numbers to their roots.

Notation

Let $S \subset \N $ denote the set of square numbers. Let $f: S \to N$ be the function such that $f(s)$ is the square root of $s$. We denote the result of $f$ on $n$ by $\sqrt{n}$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view