\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Natural Sums
Needed by:
Factorials
Integer Products
Natural Powers
Number of Set Products
Order and Arithmetic
Prime Numbers
Square Numbers
Links:
Sheet PDF
Graph PDF

Natural Products

Why

We want to add repeatedly.

Definitiong result

For each natural number $m$, there exists a function $p_m: \omega \to \omega $ which satisfies

\[ p_m(0) = 0 \quad \text{ and } \quad p_m(\ssuc{n}) = \ssuc{(p_m(n))} + m \]

for every natural number $n$.
The proof uses the recursion theorem (see Recursion Theorem).1

Let $m$ and $n$ be natural numbers. The value $p_m(n)$ is the product of $m$ with $n$.

Notation

We denote the product $p_m(n)$ by $m \cdot n$. We often drop the $\cdot $ and write $m \cdot n$ as $mn$.

Properties

The properties of products are direct applications of the principle of mathematical induction (see Natural Induction).2

Let $k$, $m$, and $n$ be natural numbers. Then

\[ (k \cdot m) \cdot n = k \cdot (m \cdot n). \]

Let $m$ and $n$ be natural numbers. Then

\[ m \cdot n = n \cdot m. \]


  1. Future editions will give the entire account. ↩︎
  2. Future editions will include the accounts. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view