\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Natural Products
Needed by:
Bit Strings
Natural Arithmetic
Natural Number Notation
Sheet PDF
Graph PDF

Natural Powers


We want to repeatedly multiply.

Defining result

For each natural number $m$, there exists a function $e_m: \omega \to \omega $ which satisfies

\[ e_m(0) = 1 \quad \text{ and } \quad e_m(\ssuc{n}) = \ssuc{(e_m(n))} \cdot m \]

for every natural number $n$.
The proof uses the recursion theorem (see Recursion Theorem).1

Let $m$ and $n$ be natural numbers. The value $p_m(n)$ is the power of $m$ with $n$. Or the $n$th power of $m$


We denote the $n$th power of $m$ by $m^n$.


Here are some basic properties of powers.

Let $k$, $m$, and $n$ be natural numbers. Then

\[ m^{n}m^{k} = m^{k + k}. \]

Let $k$, $m$, and $n$ be natural numbers. Then

\[ (m^{n})^k = m^{nk}. \]

  1. Future editions will give the entire account. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view