\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Natural Numbers
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Natural Numbers Exercises

Why

Some additional practice with natural numbers.

Exercises

Show that if $n$ is a natural number, then $\ssuc{n} \neq n$.
Show that if $n \neq 0$, then there exists a natural number $m$ so that $n = \ssuc{m}$.
Prove that $\omega $ is infinite.
Let $E$ be a nonempty subset of a natural number. Show that ther exists $k \in E$ so that $k \in m$ whenever $m \in E$ and $m \neq k$.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view