\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Probabilistic Errors Linear Model
Needed by:
Sheet PDF
Graph PDF

Multiway Classification Models


The two-sample model (or the two-sample problem) has input space $\set{1, 2}$ and regression function $\phi : \set{1, 2} \to \R ^2$ where $\phi (1) = \transpose{(1, 0)}$ and $\phi (2) = \transpose{(0, 1)}$. In this case, we model two populations (corresponding to 1 and 2) with different means but a common variance. The regression range is the set $\set{(1, 0), (0, 1)}$.

Generalizing from two to $a$ populations gives the one-way classification model. In that case the input space is $\set{1, \dots , a}$ and the regression function is $\phi : \set{1, \dots , a} \to \R ^a$ defined by $\phi (i) = e_i$ where $e_i$ is the standard unit vector in $\R ^a$.1 The regression range is $\set{e_1, \dots , e_a}$. In this case we say that the factor population takes levels $1, \dots , a$.

If there are more than one factors, then we have a multiway classification model. For example, the two-way classification model with no interaction has input domain $X = \set{1, \dots , a} \times \set{1, \dots , b}$ and the regression function $\phi : X \to \R ^{a + b}$ is defined by $\phi (i, j) = \transpose{(e_i, e_j)}$.

  1. Future editions will define the standard unit vector. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view