\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Knapsack Problems
Needed by:
Generalized Assignment Problems
Links:
Sheet PDF
Graph PDF

Multiple Knapsack Problems

Why

We consider knapsack problems in which there is more than one knapsack.

Definition

Given $p: \set{1, \dots , n} \to \R $, $w: \set{1, \dots , n} \to \R $ and $c \in \R _+^n$, find $x: \set{0,\dots ,m} \times \set{0, \dots , n} \to \{0,1\}$ to

\[ \begin{aligned} \text{maximize} & \quad \textstyle \sum_{i = 1}^m \sum_{j = 1}^{n} p_j x_{ij} \\ \text{subject to} & \quad \textstyle \sum_{j = 1}^n w_jx_{ij} \leq c_i , \quad i = 1, \dots , n\\ & \quad \textstyle \sum_{j = 1}^{n} x_{ij} \leq 1, \quad i = 1, \dots , n \\ & \quad x_{ij} \in \{0,1\} \quad i = 1, \dots , m, j = 1, \dots , n \end{aligned} \]

Here $x_{ij}$ is one if and only if item $j$ is assigned to knapsack $i$. The above is called the multiple knapsack problem (or 0-1 muliple knapsack problem).

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view