\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Optimization Problems
Combined Orders
Matrix Transpose
Multivariate Functions
Needed by:
Optimal Classifiers
Links:
Sheet PDF
Graph PDF

Multiobjective Optimization Problems

Why

Often we care about multiple criteria at once.1

Definition

A multiobjective optimization problem is a pair $(X, f: X \to \R ^d)$. As before, $X$ is the constraint set and $f$ is called the objective function. Since $f$ is vector valued, and there is no natural order on $\R ^d$, there may exist $x \in X$ with non-comparable images under $f$.

Scalarization

The $\alpha \in \R ^d$ scalarization of a multiobjective optimization problem $(X, f)$ is the optimization problem $(X, g)$ where $g: X \to \R $ is defined by $g(x) = \alpha ^\tp f(x)$. We call $g$ the scalarized objective.


  1. Future editions will modify. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view