\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Monotone Real Functions
Needed by:
Monotonic Functions of Real Matrices
Links:
Sheet PDF
Graph PDF

Monotonic Functions

Why

We can generalize the notion of real monotone functions to functions between any two sets with total partial orders.

Definition

Let $(A, \geq_A)$ and $(B, \geq_B)$ be two partially ordered sets. $f:A \to B$ is isotonic if it is order preserving and antitonic if it is order reversing. A function is monotonic if it is either antitonic or isotonic.1

Examples2


  1. Future editions may modify this terminology. ↩︎
  2. Future editions will include. A nice example is monotonic matrix functions. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view