\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Functions
Real Order
Needed by:
Monotonic Functions
Links:
Sheet PDF
Graph PDF

Monotone Real Functions

Why

We can interpret a real function as tracing a path as we move from left to right in its domain.1 We want language for whether this tracing increases or decreases the range values.

Definition

Let $A \subset \R $ and let $f: A \to \R $. A function is monotone increasing if $f(x) < f(y)$ whenever $x < y$, and monotone nondecreasing if $f(x) \leq f(y)$ whenever $x, y \in \R $ and $x < y$.2 Similarly we define monotone decreasing and monotone nonincreasing.


  1. Future editions will likely have this interpretation in a separate sheet. ↩︎
  2. Unforunately, some authors use “monotone increasing for “monotone nondecreasing” and use the terminolgy strictly monotone increasing for “monotone increasing”.” ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view