\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Subset Systems
Needed by:
Generated Monotone Class
Monotone Algebras
Sheet PDF
Graph PDF

Monotone Classes


The limit of an increasing sequence of sets is the family union of the sequence. The limit of a decreasing sequence of sets is the family intersection of the sequence.

A monotone limit of an sequence of sets is the limit of a monotone sequence.

A monotone class is a subset system in which monotone limits of monotone sequences of distinguished sets are distinguished. We call the distinguished sets a monotone class.


Let $A$ a non-empty set with partial order $\preceq$. Let $(A, \mathcal{A} )$ be a subset space on $A$.

Let $\seq{A}$ be an increasing or decreasing sequence in $\mathcal{A}$. We denote the limit of $\seq{A}$ by $\lim_{n} \seqt{A}$.

If $\seq{A}$ is increasing, $\lim_n \seqt{A} = \cup_{n} \seqt{A}$. If $\seq{A}$ is decreasing, $\lim_n \seqt{A} = \cap _{n} \seqt{A}$.

If $(A, \mathcal{A} )$ is a monotone space, then for all monotone $\seq{A}$ in $\mathcal{A} $, $\lim_{n} \seqt{A} \in \mathcal{A} $. In this case, $\mathcal{A} $ is a montone class.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view