\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real-Valued Random Variable Expectation
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Moment Generating Function

Results

The moment generating function of a real-valued random variable is the function mapping real numbers to the expectation of the exponential of the product of that real number with the random variable.

Notation

Let $(X, \mathcal{A} , \mu )$ be a probability space. Let $f$ be a real-valued random variable on $X$. Let $R$ denote the real numbers. For each $t \in R$, denote by $tf$ the function $x \mapsto tf(x)$. Similarly, denote by $e^{tf}$ the funciton $x \mapsto e^{tf(x)}$.

Denote the moment generating function of $f$ by $m_f: R \to R$. We defined it by

\[ m_f(t) = \E (e^{tf}). \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view