\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Estimators
Real-Valued Random Variable Expectation
Norms
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Minimum Mean Squared Error Estimator

Why

What is the best estimator for a real-value random variable if we consider the squared loss.

Definition

We want to estimate a random variable $x: \Omega \to \R ^n$ from a random variable $y: \Omega \to \R ^n$ using an estimator $\phi : \R ^m \to \R ^n$.

The mmse estimator is the conditional mean.

Let $x:\Omega \to\R ^n$ and $y: \Omega \to \R ^m$. A minimum mean squared error estimator or MMSE estimator or least square estimator for $x$ given $y$ is an estimator $f: \R ^m \to \R ^n$ which minimizes $\E \norm{f(x) - y}^2$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view