\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real-Valued Random Variable Expectation
Estimates
Norms
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Minimum Mean Squared Error Estimates

Why

What is the best estimate for a random variable if we consider the square error?

Definition

Let $(\Omega , \mathcal{A} , \mathbfsf{P} )$ be a probability space and $x: \Omega \to \R $ a random variable. A minimum mean squared error estimate or MMSE estimate or least square estimate is a value $\xi \in \R $ which minimizes $\E (x - \xi )^2$.

There is a unique MMSE estimate and it is given by $\E (x)$.

Vector case

Let $(\Omega , \mathcal{A} , \mathbfsf{P} )$ be a probability space and $y: \Omega \to \R ^n$ a random variable.1

A minimum mean squared error estimator or MMSE estimator or least square estimator is a value $\xi \in \R $ which minimizes $\E \norm{x - \xi }^2$.

There is a unique MMSE estimator and it is given by $\E (y)$.

  1. Future editions might collapse this into the previous case. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view