\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Metrics
Absolute Value
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Metric Space Examples

Why

We give examples of metric spaces.

Example

Let $n$ be a natural number. Let $A$ be $\R ^n$ and define $d: \R ^n \times \R ^n \to \R $ by

\[ d(a, b) = \sqrt{(a_1 - b_1)^2 + \cdot s + (x_n - y_n)^2}. \]

$(A, d)$ is a metric space.

Let $A$ be the unit circle in $\R ^2$. So $A = \Set{x \in R^2}{x_1^2 + b^2 = 1}$. Let $d_1: A \times A \to \R $ defined by

\[ d(a, b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}. \]

Let $d_2: A \times A \to \R $ defined as the arc length between the two points. Both $(A, d_1)$ and $(A, d_2)$ are metric spaces.

Let $A = C([0, 1], \R )$. Let $d_1: A \times A \to \R $ be such that

\[ d_1(a, b) = \underset{x \in [0, 1]}{\max} \abs{a(x) - b(x)}. \]

Let $\lambda $ be the outer cover measure. Let $d_2: A \times A \to R$ be such that

\[ d_2(a, b) = \int_{[0, 1]} \abs{f - g} d\lambda . \]

Both $(A, d_1)$ and $(A, d_2)$ metric spaces.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view