We give examples of metric spaces.
Let $n$ be a natural number.
Let $A$ be $\R ^n$ and define $d: \R ^n
\times \R ^n \to \R $ by
\[
d(a, b) = \sqrt{(a_1 - b_1)^2 + \cdot s + (x_n - y_n)^2}.
\]
Let $A$ be the unit circle in $\R ^2$.
So $A = \Set{x \in R^2}{x_1^2 + b^2 = 1}$.
Let $d_1: A \times A \to \R $ defined by
\[
d(a, b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}.
\]
\[ d_1(a, b) = \underset{x \in [0, 1]}{\max} \abs{a(x) - b(x)}. \]
Let $\lambda $ be the outer cover measure. Let $d_2: A \times A \to R$ be such that\[ d_2(a, b) = \int_{[0, 1]} \abs{f - g} d\lambda . \]
Both $(A, d_1)$ and $(A, d_2)$ metric spaces.