\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Entire Functions
Complex Rational Functions
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Meromorphic Functions

Why

The entire functions “extend” the polynomial functions. For polynomial in $\C $, we can extend the class to the (complex) rational functions in $\C $. Can we similarly extend the class entire functions?1

Definition

A meromorphic function (or fractional function) is a function $f: \C \to \C $ for which there exists entire functions $g: \C \to \C $ and $h: \C \to \C $ so that

\[ f(z) = \frac{g(z)}{h(z)} \]

for all $z \in \C $.2


  1. Future editions may modify. ↩︎
  2. Future editions will continue the development. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view