\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Finite Signed Measures
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Measure Vector Space

Why

If both signed measures are finite, then their difference is always well-defined. Is the difference a finite signed measure?

Preliminary result

A linear combination of finite signed measures is a finite signed measure.

Let $(X, \mathcal{A} )$ be a measurable space. Let $\mu $ and $\nu $ be finite signed measures. Let $R$ denote the real numbers. Then $(\alpha \mu )(\varnothing) = \alpha \cdot \mu (\varnothing) = \alpha \cdot 0 = 0$. Also for $\seq{A} \subset \mathcal{A} $ disjoint,

\[ \begin{aligned} (\alpha \mu )(\cup A_n) &= \alpha \mu (\cup A_n) = \alpha \sum_{n = 1}^{\infty} \mu (A_n) \\ &= \sum_{n = 1}^{\infty} \alpha \mu (A_n) = (\alpha \mu )(A_n) \end{aligned} \]

Similarly, $(\mu + \nu )(\varnothing) = \mu (\varnothing) + \nu (\varnothing) = 0$. And, for $\seq{A} \subset \mathcal{A} $ disjoint,

\[ \begin{aligned} (\mu + \nu )(\cup A_n) &= \mu (\cup A_n) + \nu (\cup A_n) = \sum_{n = 1}^{\infty} \mu (A_n) + \sum_{n = 1}^{\infty} \nu (A_n) \\ &= \sum_{n = 1}^{\infty} \mu (A_n) + \nu (A_n) = \sum_{n = 1}^{\infty} (\mu + \nu )(A_n) \end{aligned} \]

Main result

The set of finite signed measures is a vector space.
Use the previous proposition. Observe that the function $\mu \equiv 0$ is a measure. And $\nu + \mu = \nu $ for all measures $\nu $.

Notation

We denote the vector space of signed measures on measurable space $(X, \mathcal{A} )$ by by $M(X, \mathcal{A} , \R )$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view