\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Integrals
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Measurable Sections

Why

Toward a theory of iterated integrals, we need to know that set and function sections are measurable.

Results

Let $(X, \mathcal{A} )$ and $(Y, \mathcal{B} )$ be measurable spaces. For any $E \in \mathcal{A} \times \mathcal{B} $, the sections $E_x$ and $E^y$ are measurable for any $x \in X$ and $y \in Y$.

Let $(X, \mathcal{A} )$ and $(Y, \mathcal{B} )$ be measurable spaces. Let $f: X \times Y \to F$, where $F$ is the extended real numnbers or the complex numbers, and $f$ is measurable (using the appropriate sigma algebra of the codomain). The sections $f_x: Y \to F$ and $f^y: X \to F$ are measurable for each $x \in X$ and $y \in Y$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view