\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Optimizers
Outcome Probabilities
Lists
Needed by:
Data Models
Distribution Graph Selectors
Maximum Likelihood Densities
Links:
Sheet PDF
Graph PDF

Maximum Likelihood Distributions

Why

We want to summarize a dataset with a distribution.

\ssection{Overview}

The likelihood (or distribution likelihood) of a probability distribution $p: A \to \R $ on a dataset $a^1, \dots , a^n \in A$ is $\prod_{i = 1}^{n} p(a^i)$. A maximum likelihood distribution $p^\star: A \to \R $ is one which maximizes the likelihood over all distributions on $A$.

We call the correspondence between datasets and distributions the maximum likelihood algorithm. We say that we are selecting the distribution according to the maximum likelihood principle. In general, we call any function from datasets to distributions a distribution selector.

\blankpage

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view