\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Distribution Graph Selectors
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Maximum Likelihood Distribution Graphs

Why

How to select distribution graphs.1

Definition

Let $(G, A)$ be a typed graph on $\set{1, \dots , n}$. Let $S \subset \set{1, \dots , n}$. Let $x^1, \dots , x^n$ be a dataset in $A_S = \prod_{j \in S} A_j$ (see Function Graphs). The observation likelihood for this dataset is the observation distribution likelihood of the dataset $\prod_{i =1}^{n} p_S(x^i)$.

A maximum likelihood distribution graph is one that maximizes the observation likelihood. The maximum likelihood distribution graph with respect to a parametric distribution family is the member of the family that maximizes the observation likelihood.


  1. Future editions will modify. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view