\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Maximum Likelihood Distributions
Probability Densities
Needed by:
Data Models
Empirical Normal
Maximum Likelihood Normals
Links:
Sheet PDF
Graph PDF

Maximum Likelihood Densities

Why

We want to summarize a dataset in $\R $ with a density.

Definition

The likelihood (or density likelihood) of a density $f: \R \to \R $ on a datset $x^1, \dots , x^n \in \R $ is $\prod_{k = 1}^{n} f(x^k)$. A maximum likelihood density is a density which maximizes the likelihood among all densities.

As with probability distributions, we say that we are selecting the distribution according to the maximum likelihood principle. In general, we call any function from datasets to densities a density selector.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view