\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Matrices
Real Matrix-Matrix Products
Matrix Transpose
Needed by:
Affine MMSE Estimators
Matrix Scalar Product
Maximum Likelihood Tree Normals
Minimum Residual Affine Sets
Quadratic Forms
Links:
Sheet PDF
Graph PDF

Matrix Trace

Definition

The trace of a square real matrix is the sum of its diagonal entries.

Notation

We denote the function which associates a matrix with its trace by $\tr: \R ^{n \times n} \to \R $. The trace of $A \in \R ^{n \times n}$ is

\[ \tr A = \sum_{i = 1}^{n} A_{ii}. \]

Properties

The trace is a linear function on the vector space of $n \times n$ real matrices.

Let $A, B \in \R Mat{n}{n}$ and $\alpha , \beta \in \R $. Define $C = \alpha A + \beta B$. Then $C_{ii} = \alpha A_{ii} + \beta B_{ii}$. So

\[ \begin{aligned} \tr C = \sum_{i = 1}^{n} C_{ii} &= \sum_{i = 1}^{n} \alpha A_{ii} + \beta B_{ii} \\ &= \alpha \sum_{i = 1}^{n} A_{ii} + \beta \sum_{i = 1}^{n} B_{ii} \\ &= \alpha \tr A + \beta \tr B. \end{aligned} \]

Let $A, B \in \R ^{n \times n}$. Then

\[ \trp{AB} = \trp{BA}. \]

In other words, “matrices commute under the trace operator.”

Let $A \in \R ^{n \times n}$. Then $\tr A = \tr A^\top $.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view