\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Matrix-Matrix Products
Real Square Roots
Needed by:
Lower Upper Triangular Factorizations
Projector Matrices
Links:
Sheet PDF
Graph PDF

Matrix Squares

Definition

The square of a square matrix is the product of the matrix with itself. A square root (or matrix square root) of a given matrix is a matrix whose square is the given matrix. A matrix is idempotent if it is equal to its square.

Notation

Let $A \in \R ^{n \times n}$. Then the square of $A$ is $AA$. We denote the square of $A$ by $A^2$. $A$ is idempotent if $A^2 = A$. $B \in \R ^{n \times n}$ is a square root of $A$ if $A = B^2$.

Existence and uniqueness

Clearly a matrix can have a square root. Take for example the matrix in $\R ^{1 \times 1}$ which is $\bmat{1}$. A square root of this matrix is $\bmat{1}$, but also $\bmat{-1}$. So matrix square roots do exist, but are not unique.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view