\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Matrix Determinants
Real Matrix-Matrix Products
Real Matrices
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Matrix Rings

Why

Matrices with elements in a ring form a ring.

Definition

Suppose $(R, +, \cdot )$ is a ring. Given $A, B \in R^{n \times n}$, define the binary operation $\bar{+}: R^{n \times n} \times R^{n \times n} \to R^{n \times }$ by

\[ \left[A \; \bar{+} \; B\right]_{ij} = A_{ij} + B_{ij} \]

and define the binary operation $\bar{\cdot }: R^{n \times n} \times R^{n \times n} \to R^{n \times n}$ by

\[ \left[A \; \bar{\cdot } \; B\right]_{ij} = \sum_{k = 1}^{n} A_{ik}B_{kj} \]

Both of these definitions are similar to the case with real matrices. With these operations so defined, the object $(R^{n \times n}, \bar{+}, \bar{\cdot })$ is a ring. In other words, the set of $n \times n$ matrices whose elements are in some ring $R$ is itself a ring, with the usual operations of addition and multiplication of matrices.

The additive identity of the ring is the matrix $0 \in R^{n \times n}$ for which $0_{ij} = 0 \in R$. The multiplicative identity the matrix $I$ for which $I_{ii} = 1 \in R$ for $i = 1, \dots , n$ and $I_{ij} = 0 \in R$ for $i \neq j = 1, \dots , n$. As seen with real-valued matrices, multiplication on $R^{n \times n}$ need not be commutative even if $R$ is.

Show that $R^{n \times n}$ is not a division ring when $n > 1$.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view