\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Matrix Inverses
Matrices
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Matrix Inverses

Why

What is the inverse element under matrix multiplication.

Definition

Recall that if $A \in \R ^{m \times n}$ then $x \mapsto Ax$ is a function from $\R ^{n}$ to $\R ^{m}$. Clearly, if $m \neq n$, then the inverse of $f$ can not exist.1

Now suppose that $A \in \R ^{n \times n}$. Of course, the inverse may not exist. Consider, for example if $A$ was the $n$ by $n$ matrix of zeros. If there exists a matrix $B$ so that $BA = I$ we call $B$ the left inverse of $A$ and likewise if $AC = I$ we call $C$ the right inverse of $A$. In the case that $A$ is square, the right inverse and left inverse coincide.

Let $A, B, C \in \R ^{n \times n}$. Let $BA = I$ and $AC = I$. Then $B = C$.
Since $BA = AC$ we have $BBA = BAC$ so $B = C$ since $BA = I$.

Notation

Let $\F $ be a field. Let $A \in \F ^{n \times n}$ be invertible. We follow the notation of inverse elements and denote the inverse of $A$ by $A^{-1}$.


  1. Future editions will expand. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view