\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Matrices
Real Matrix-Vector Products
Vectors as Matrices
Linear Combinations
Needed by:
Matrices and Linear Transformations
Links:
Sheet PDF
Graph PDF

Matrix-Vector Products

Definition

The matrix-vector product between an $m \times n$-matrix and an $n$-vector is the result of the linear combination of the columns of the matrix with the sequence of scalars in the vector. So the matrix-vector product is an $m$-vector.

Notation

Let $C$ be a nonempty set. Let $A \in \Mat{C}{m}{n}$ and let $x \in \Vec{C}{n}$. As usual, we denote the matrix-vector product of $A$ with $x$ by $Ax$, read “A x,” and defined by

\[ b_i = \sum_{j = 1}^{n} a_{ij}x_j \]

for $i \in \upto{m}$. Let

\[ A = \bmat{ & a_1^\tp & \\ & a_2^\tp & \\ & \vdots & \\ & a_{m}^\tp & } \]

Or, if $a_i^\top $ is the $i$th row of $A$, then

\[ b_i = a_i^\top x \]

for $i \in \upto{m}$.

\blankpage

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view