\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Matrix-Vector Products
Linear Transformations
Vector Space Dimensions
Vector Space Bases
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Matrices and Linear Transformations

Why

All linear transformations are equivalent to multiplication by a matrix.

Main result

Let $(V_1, \F ), (V_2, \F )$ be two vector spaces and $f: V_1 \to V_2$ be a transformation between them.

If $f$ is linear, then there exists bases for the spaces and a matrix $A$ in $\F $ for which matrix multiplication is equivalent to applying $f$.

If $A$ is a matrix in $F$ $f$ is linear if and only if there exists a matrix in $\F $ whose coordinates in $V_1$ to coordinates in $V_2$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view