\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Vectors
Real Matrices
Needed by:
Complex Matrices
Diagonal Matrices
Index Matrices
Matrix-Vector Products
Matrix Determinants
Matrix Inverses
Matrix Rank
Orthogonal Matrices
Orthogonal Triangular Decomposition
Permutation Matrices
Submatrices
Symmetric Matrices
Links:
Sheet PDF
Graph PDF

Matrices

Why

We generalize the notion of real matrices, to matrices with elements in any set.

Definition

Let $S$ be a set. A matrix in $S$ (or of elements in $S$) is a two-dimensional array in $S$. We call the matrice's values the entries of the matrix.

As with real matrices, we think of the objects in the codo set as arrayed in a grid or arrayed in a table. We call $n$ and $m$ the dimensions of the matrix. We call $n$ the height and $m$ the width. If the height of the matrix is the same as the width of the matrix then we call the matrix square. If the height is larger than the width, we call the matrix tall. If the width is larger than the height, we call the matrix wide.

Notation

Let $S$ be nonempty set. We denote the set of $n \times m$ $S$-valued matrices by $S^{n \times m}$. Let $a \in S^{n \times m}$. This means the same as $a: \upto{n} \times \upto{m} \to S$. We denote $a(i, j)$ by $a_{ij}$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view