\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Directed Graphs
Set Partitions
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Marked Graphs

Why

Sometimes it is convenient to partition the set of veritices of a graph.

Definition

Given a directed graph $G = (V, E)$, a marking (or coloring) of $G$ is a partition $P$ of $V$. A marked graph (or colored graph) is a pair $(G, M)$ where $M$ is a marking for $G$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view