\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Multivariate Real Densities
Needed by:
Conditional Densities
Differential Mutual Information
Links:
Sheet PDF
Graph PDF

Marginal Densities

Definition

The $i$th marginal density of a multivariate density is the density obtained by integrating over every component with a particular component fixed.

Similalry the $i,j$th marginal density of a multivariate density is the density obtained by integrated over every component with the $i$ and $j$th components fixed.

Notation

Let $f: \R ^d \to \R $ be a density. For $i = 1, \dots , d$, let $f_i: \R \to \R $ be defined by

\[ f(\xi ) = \int _{\Set*{x \in \R ^d}{x_i = \xi }} f \]

for each $\xi \in \R $. Then $f_i$ is the $i$th marginal density of $f$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view