\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Ordinary Reducer Factorization
Symmetric Matrices
Permutation Matrices
Matrix Squares
Needed by:
Symmetric Lower Upper Triangular Factorizations
Links:
Sheet PDF
Graph PDF

Lower Upper Triangular Factorizations

Why

If a system $(A, b)$ is ordinarily reducible, then there exists $L$ unit lower triangular and $U$ upper triangular so that $A = LU$. When does such a factorization exist?

Definition

Let $A \in \R ^{m \times m}$. A lower upper triangular factorization of $A$ is a pair of matrices $(L \in \R ^{m \times m}, U \in \R ^{m \times m})$ where $L$ is unit lower triangular, $U$ is upper triangular and $A = LU$. Other terminology includes lower upper triangular decomposition, LU factorization, and LU decomposition.

If $(A, b)$ is ordinarily reducible, a $LU$ factorization exists.

What about an $LU$-factorization when $(A, b)$ is not ordinarily reducible? The main issue is that we may encounter a diagonal entry of some reduction of $A$ which is zero.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view