\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Outcome Probabilities
Logarithm
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Log-Linear Probability Distributions

Definition

A probability distribution $p: X \to [0,1]$ is log-linear (a log-linear probability distribution) if the function $f: X \to \R $ defined by

\[ f(x) = \log p(x) \quad \text{for all } x \in X \]

is a linear function

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view