\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Linear Transformations
Needed by:
Invertible Linear Transformations
Links:
Sheet PDF
Graph PDF

Linear Transformation Products

Why

We can consider function composition for linear maps?

Definition

Given vector spaces $U, V, W$ over the same field $\F $ and linear maps $T \in \mathcal{L} (U, V)$ and $S \in \mathcal{L} (V, W)$, the product of $S$ and $T$ is the linear map $R \in \mathcal{L} (U, W)$ defined by

\[ R(u) = S(T(u)) \quad \text{for all } u \in U \]

(Prove that $R$ so defined is linear). In other words, the product is $S \circ T$.

This definition only makes sense if $T$ maps into the domain of $S$. We often say that the maps are conforming in this case.

Notation

Often the product is denoted $ST$ (instead of $S \circ T$).

Algebraic properties

Suppose $T_1, T_2, T_3$ are three linear maps so that conforming for $T_1T_2T_3$. Then

\[ (T_1T_2)T_3 = T_1(T_2T_3) \]

Not commutative

Image of zero

Suppose $T$ is a linear map from $V$ to $W$. Then $T(0) = 0$.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view