We want to solve linear equations. Our approach is to “eliminate” variables from equations in our system. Once we reach an equation in one variable, we will back-substitute to solve.
Suppose we want to find $x_1, x_2 \in \R $ to
satisfy
\[
\begin{aligned}
3x_1 + 2x_2 &= 10, \text{ and} \\
6x_1 + 5x_2 &= 20. \\
\end{aligned}
\] \[
\begin{aligned}
3x_1 + 2x_2 &= 10 \text{ and } \\
x_2 &= 0.
\end{aligned}
\]
What if instead we have four unknowns?
Suppose
\[
A = \barray{2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 &
7 & 9 & 5 \\ 6 & 7 & 9 & 8} \text{ and } b = \barray{
1 \\ 2 \\ 3 \\ 4}.
\] \[
A^1 = \barray{
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 3 & 5 & 5 \\
0 & 4 & 6 & 8 \\
} \text{ and } b^1 = \barray{
1 \\
0 \\
-1 \\
1 \\
}
\] \[
A_2 = \barray{
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 \\
0 & 0 & 2 & 4 \\
} \text{ and } b^2 = \barray{
1 \\
0 \\
-1 \\
1 \\
}
\] \[
A^3 = \barray{
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 2 \\
} \text{ and } b^3 = \barray{
1 \\
0 \\
-1 \\
3 \\
}.
\]
Let $S = (A \in \R ^{m \times n}, b \in \R ^{n})$ be a linear system. The lower row reduction of $S$ for index $i$ with $A_{ii} \neq 0$ (or the $i$-row reduction) is the linear system $\tilde{A}_{st} = A_{st} - (A_{sj}/A_{ij})A_{it}$ if $i < s \leq m$ and $A_{st}$ otherwise. We say that the system $(A, b)$ is ordinarily reducible.
Let $a^k, \tilde{a}^k \in \R ^{n}$ denote the $k$th row of $A$ and $\tilde{A}$, respectively. Then if $k \neq i$, $\tilde{a}^k = a^k - \alpha _k a^i$ where $\alpha _k = A_{kj}/A_{ij}$. In other words, a row $k$ of the matrix $\tilde{A}$ is obtained by subtracting a multiple of the $i$th row of matrix $A$ from row $k$ of matrix $A$. We are “reducing” the rows of $A$.
First we reduce by subtracting twice row 1
from row 2, four times row 1 from row 3, and
three times row 1 from row 4.
\[
S_1 = \parens{\barray{
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 3 & 5 & 5 \\
0 & 4 & 6 & 8 \\
}, \barray{
1 \\
0 \\
-1 \\
1 \\
}}.
\] \[
S_2 = \left(\barray{
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 \\
0 & 0 & 2 & 4 \\
}, \barray{
1 \\
0 \\
-1 \\
1 \\
}\right).
\] \[
\begin{aligned}
2x_1 + x_2 + x_3 &= 1,& \\
x_2 + x_3 + x_4 &= 0,& \\
2x_3 + 2x_4 &= -1,& \text{ and } \\
2x_4 &= 3.&
\end{aligned}
\]