\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Linear Optimization Problems
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Linear Optimization Solutions

Why

Do solutions exist to a linear optimization problem which is feasible and bounded? Yes.

Result

Suppose $A \in \R ^{m \times n}$, $b \in \R ^n$, and $c \in \R ^n$ so that

\[ P = \Set{x \in \R ^n}{Ax \leq b} \neq \varnothing \]

and

\[ \delta = \inf \Set{c^\top x}{x \in P} > -\infty \]

Then there exists $x^\star \in \R ^n$ with $c^\top x^\star = \delta $.

For this reason, a linear program is sometimes abbreviated $\min\Set{cx}{Ax \leq b}$ instead of $\inf\set{c^\top x}{Ax \leq b}$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view